Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.

نویسندگان

  • Yi-Fan Huang
  • Surojit Chattopadhyay
  • Yi-Jun Jen
  • Cheng-Yu Peng
  • Tze-An Liu
  • Yu-Kuei Hsu
  • Ci-Ling Pan
  • Hung-Chun Lo
  • Chih-Hsun Hsu
  • Yuan-Huei Chang
  • Chih-Shan Lee
  • Kuei-Hsien Chen
  • Li-Chyong Chen
چکیده

Nature routinely produces nanostructured surfaces with useful properties, such as the self-cleaning lotus leaf, the colour of the butterfly wing, the photoreceptor in brittlestar and the anti-reflection observed in the moth eye. Scientists and engineers have been able to mimic some of these natural structures in the laboratory and in real-world applications. Here, we report a simple aperiodic array of silicon nanotips on a 6-inch wafer with a sub-wavelength structure that can suppress the reflection of light at a range of wavelengths from the ultraviolet, through the visible part of the spectrum, to the terahertz region. Reflection is suppressed for a wide range of angles of incidence and for both s- and p-polarized light. The antireflection properties of the silicon result from changes in the refractive index caused by variations in the height of the silicon nanotips, and can be simulated with models that have been used to explain the low reflection from moth eyes. The improved anti-reflection properties of the surfaces could have applications in renewable energy and electro-optical devices for the military.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.

We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etchi...

متن کامل

High-performance Nanopillar Arrays with Anti-reflective and Anti-bacterial Properties

The reflection of light at interfaces limits the performance of optical components. An anti-reflection (AR) coating layer is often applied to improve the optical transmittance. Besides the commonly used singleor multi-layer coatings reducing the reflection, subwavelength nanostructures have gained more attention as an effective AR feature. A wide choice of materials can be nanostructured withou...

متن کامل

Design of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency

In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...

متن کامل

Correlation Between Surface Morphology and Optical Properties of Quasi-Columnar Porous Silicon Nanostructures

In the current work, the effect of surface morphology on light emission property and absorption behavior of quasi-columnar macro-porous silicon (PS) was investigated. PS structures with different morphology were synthesized using photo-electrochemical etching method by applying different etching current densities. SEM micrographs showed that empty macro-pores size and porosity of PS layers were...

متن کامل

Optimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution

In this paper, the morphology of chemically etched silicon with various concentration  is reported. The surface of Silicon (100) has pyramidal structures which can be used for anti-reflection applications in solar cells. Pyramidal structures can capture incident sun light therefore can enhance the efficiency of silicon solar cells. The structure of silicon pyramid was studied using scanni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 2007